Synthesis and structures of gallium alkoxides†

Siama Basharat, Caroline E. Knapp, Claire J. Carmalt,* Sarah A. Barnett and Derek A. Tocher

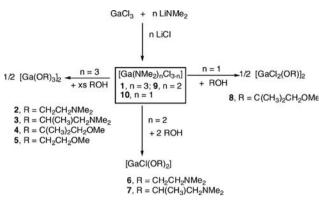
Received (in Durham, UK) 29th January 2008, Accepted 13th March 2008 First published as an Advance Article on the web 29th April 2008 DOI: 10.1039/b801579a

Homoleptic gallium tris(alkoxides) $[Ga(OR)_3]_2$ were prepared by the reaction of $[Ga(NMe_2)_3]_2$ (1) and excess ROH (R = $CH_2CH_2NMe_2$ (2), $CH(CH_3)CH_2NMe_2$ (3), $C(CH_3)_2CH_2OMe$ (4), CH_2CH_2OMe (5)) in toluene at room temperature. Compounds 2–5 were isolated as colourless oils. The side-products, $[Ga(OCH_2CH_2NMe_2)_2Cl]$ (6), $[Ga(OCH(CH_3)CH_2NMe_2)_2Cl]$ (7) and $[Ga(OC(CH_3)_2CH_2OMe)Cl_2]_2$ (8) were also isolated in low yield during the synthesis of 2, 3 and 4, respectively. However, compounds 6 and 7 were also prepared directly from the reaction of $[Ga(NMe_2)_2Cl]$ and 2 equivalents of ROH (6, R = $CH_2CH_2NMe_2$; 7, R = $CH(CH_3)CH_2NMe_2$). Similarly, compound 8 was isolated from the reaction of $[Ga(NMe_2)Cl_2]$ and 1 equivalent of $HOC(CH_3)_2CH_2OMe$. Single crystal X-ray crystallography showed that the gallium bis(alkoxides) (6 and 7) are monomeric in the solid state with the gallium centre adopting a distorted trigonal bipyramidal geometry. In contrast, the gallium mono(alkoxide) 8 is dimeric.

Introduction

Group 13 diorganoalkoxometallanes are well known and a large number have been structurally characterised. These complexes, $[R_2M(OR')]_n$ (M = Al, Ga, In; R, R' = alkyl or aryl), are usually dimeric or trimeric and can be prepared via the reaction of R₃M with alcohol or salt elimination from the reaction of R_2MX and M'OR (M' = alkali metal). In contrast, only a limited number of examples of organo-dialkoxometallanes have been reported in the literature.²⁻⁵ These are rare species for gallium and indium, in contrast to the well known diorganoalkoxometallanes of gallium. Until recently, the only structurally characterized example of an organodialkoxogallane incorporating a simple monodentate alkoxide group was [HGa(O'Bu)₂]₂.² In general, reaction of a gallane with two equivalents or an excess of alcohol does not yield the expected organodialkoxogallane, $[RM(OR')]_n$, in most cases. Instead reaction of Me₃M with an excess of alcohol often results in the formation of sesquialkoxides.^{6,7} However, a dialkoxogallane incorporating donor functionalised ligands was prepared by the reaction of Et₃Ga with an excess of HOCH₂CH₂NMe₂ in toluene, under reflux conditions.³ The structure of [EtGa(OCH₂CH₂NMe₂)₂] was shown to be monomeric with the gallium centre adopting a distorted trigonal bipyramidal coordination geometry. More recently, similar reactions between Me₃Ga and two equivalents of ROH $(R = Et, ^nBu)$ in refluxing toluene afforded the methyldialkoxogallanes [MeGa(OR)₂]_n. Both compounds adopt centrosymmetrical dimers which are connected to yield infinite chains along either [100] (R = Et) or [001] (R = n Bu).

Department of Chemistry, University College London, 20 Gordon Street, London, UK WC1H 0AJ. E-mail: c.j.carmalt@ucl.ac.uk; Fax: +44 (0)207 679 7643; Tel: +44 (0)207 679 7528 † CCDC reference numbers 663201–663203. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b801579a


A number of synthesis routes have been employed for the formation of homoleptic gallium alkoxides [Ga(OR)₃]_n.¹ The general procedures include reaction of gallium trihalide with NaOR, alkoxide/alcohol exchange, amine/alcohol exchange and transesterification reactions. Surprisingly few homoleptic gallium alkoxides have been structurally characterised, including [Ga(OiPr)₃]₃, and [Ga(OCMe₂Et)₃]₂, although some ligand adducts of these complexes have been reported.^{8–10}

We have been investigating the synthesis and characterisation of a range of gallium and indium alkoxides and their subsequent use as precursors to gallium and indium oxides $(Ga_2O_3 \text{ and } In_2O_3)$. $^{3,7,11-13}$ These materials find application as gas sensors (Ga₂O₃) and transparent conductors (In₂O₃). The use of diorganoalkoxogallanes resulted in the formation of oxygen deficient gallium oxide thin films on glass.3 In an attempt to produce precursors which could form stoichiometric Ga₂O₃, we were interested in developing a range of organodialkoxogallanes and gallium tris(alkoxide)s, which possess a 1:2 and 1:3 ratio of Ga:O, respectively. The synthesis and characterisation of gallium alkoxides, of the type [Ga(OR)_nCl_{3-n}], incorporating donor functionalised ligands (n = 3, R = CH₂CH₂NMe₂, CH(CH₃)CH₂NMe₂, C(CH₃)₂- CH_2OMe , CH_2CH_2OMe ; n = 2, $R = CH_2CH_2NMe_2$, $CH(CH_3)CH_2NMe_2$; n = 1, $R = C(CH_3)_2CH_2OMe$) is reported herein. The single crystal X-ray structures of three of the compounds, [Ga(OCH₂CH₂NMe₂)₂Cl], [Ga(OCH-(CH₃)CH₂NMe₂)₂Cl] and [Ga(OC(CH₃)₂CH₂OMe)Cl₂]₂, are also reported (Scheme 1).

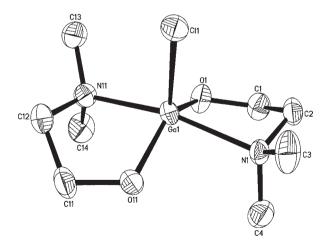
Results and discussion

Syntheses and characterization

Treatment of $[Ga(NMe_2)_3]_2$ (1) with an excess of ROH resulted in the formation of $[Ga(OR)_3]_2$ (R = CH₂CH₂NMe₂ (2), CH(CH₃)CH₂NMe₂ (3), C(CH₃)₂CH₂OMe (4), CH₂CH₂OMe (5)). In each case an oil was isolated and initially no

Scheme 1 Synthesis of compounds 1–10.

crystalline solid formed. The dimeric nature of 2-5 was suggested by mass spectroscopy and also infrared spectroscopy, with absorptions at ~ 557 and 538 cm⁻¹, corresponding to Ga₂O₂ ring modes. A fluxional coordination of the donor heteroatom was indicated by the ¹H NMR spectra of 2-5 where the absence of proton coupling in the alkoxide ligand and broadening of the associated resonances was observed. We have previously described the synthesis of compounds 2 and 3, which involved refluxing the reaction mixture for six hours. However, we have since found that this step is unnecessary and high yields of the compounds can be obtained from the same reaction at room temperature. Furthermore, on standing oils of 2 and 3 at room temperature for a few days, a small yield of colourless crystals was obtained. An X-ray crystallographic study was carried out on the colourless crystals (vide supra), which showed that the chlorodialkoxogallanes, [Ga(OCH₂CH₂NMe₂)₂Cl] (6) and [Ga(OCH-(CH₃)CH₂NMe₂)₂Cl] (7), were afforded from oils of 2 and 3, respectively. Similarly, crystals of the dimeric dichloroalkoxogallane [Ga(OC(CH₃)CH₂OMe)Cl₂]₂ (8) were obtained after standing the oil of compound 4 at room temperature for a few days. Unfortunately, crystals of 2–5 suitable for single crystal X-ray diffraction could not be isolated.


The isolation of gallium alkoxides contaminated with chloride has been observed previously.14 The formation of 6-8 must be due to incomplete substitution of all the chloride ligands in the preparation of [Ga(NMe₂)₃]₂ 1, resulting in the reaction of $[Ga(NMe_2)_nCl_{3-n}]$ (n = 2 for 6 and 7; n = 1 for 8) with ROH. These partially substituted compounds were only formed as minor impurities, as shown by the expected analytical and spectroscopic data obtained for compound 1 (Experimental section). Therefore, the reaction between [Ga(NMe₂)₂Cl]¹⁵ (9) and two equivalents of ROH (R = CH₂CH₂NMe₂, CH(CH₃)CH₂NMe₂) was carried out in order to prepare compounds 6 and 7, directly and in high yield. In both cases a pale yellow crystalline solid was isolated. Spectroscopic and analytical data indicated that the chlorodialkoxogallanes, [Ga(OCH₂CH₂N- Me_2 ₂Cl] (6) and $[Ga(OCH(CH_3)CH_2NMe_2)_2Cl]$ (7) were formed (54-60% yield). A dative ligand-metal interaction in 6 and 7 was confirmed by a comparison of proton resonances of the alkoxide ligand in the product compared to the free ligand. Thus, in the ¹H NMR of 6 and 7 a downfield shift in the resonance of protons positioned α to the donor heteroatom is observed.

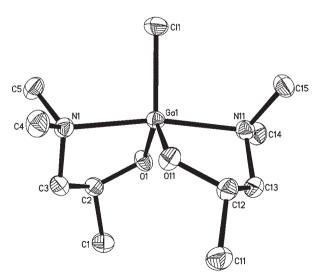
The reaction between [Ga(NMe₂)Cl₂] (10) (prepared by the reaction of GaCl₃ and one equivalent of LiNMe₂ in toluene) and one equivalent of HOC(CH₃)CH₂OMe was carried out in order to isolate compound 8 directly. Compound 8 was obtained as a pale vellow solid in high yield (Experimental section). Analytical and spectroscopic data for 8 was consistent with the formulation [Ga(OC(CH₃)CH₂OMe)Cl₂]₂ and the dimeric nature was confirmed by mass spectroscopy. The resonance of protons positioned α to the donor heteroatom showed a downfield shift, in the ¹H NMR spectrum of 8, compared to the free ligand indicating a dative ligand-metal interaction. The structure of compound 8 is described below. These results show that although 6-8 were initially obtained as minor side-products they can be synthesised in high yield from the reaction of $[Ga(NMe_2)_nCl_{3-n}]$ and one or two equivalents of ROH. Furthermore, the reaction of [Ga(NMe₂)₂Cl] and two equivalents of ROH provides a clean route to the novel gallium bis(alkoxide)s.

X-Ray crystallographic studies

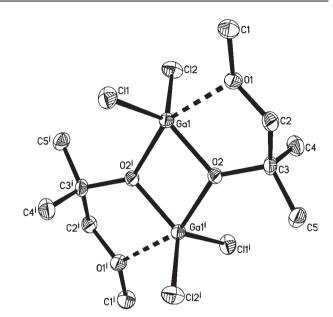
The crystal structure of compound 6 was determined by single crystal X-ray diffraction and the results are shown in Fig. 1; selected bond lengths and angles are given in Table 1. Compound 6 crystallised into the orthorhombic space group Pna2₁. It is monomeric in the solid state with the gallium atom adopting a distorted trigonal bipyramidal geometry. The oxygen atoms of each alkoxide ligand and a chlorine atom occupy the equatorial positions while the N atoms of the NMe₂ group reside in the axial positions (Fig. 1). The Ga-N distances (av. 2.140 Å) are significantly shorter than the sum of the van der Waals radii and so indicative of a strong dative bonding interaction. Similar trigonal bipryamidal geometry at the gallium centre has been observed previously in the related intramolecularly stabilised alkoxogallanes [EtGa(OCH₂CH₂- NMe_2 ₂ and $[ClGa(OR)_2]$ (R = $C(CF_3)_2CH_2C(CH_3)=NMe$ and C(CF₃)₂CH₂NMe₂).^{3,5} The Ga-O and Ga-N bond distances in these compounds are similar to those observed in 6.

The structure of compound 7 was determined by single crystal X-ray crystallography, the results are shown in Fig. 2; selected bond lengths and angles are given in Table 1. Compound 7

Fig. 1 Crystal structure showing the major component of [Ga(OCH₂CH₂NMe₂)₂Cl] (6) with thermal ellipsoids drawn at the 50% probability level (hydrogen atoms omitted for clarity).


Table 1 Selected bond lengths (Å) and angles (°) for compounds $\bf 6$ and $\bf 7$

Bond lengths/angles ^a	Compound 6	Compound '
Gal-O1	1.841(2)	1.8373(12)
Ga1-O11	1.842(3)	1.8389(12)
Ga1-N1	2.161(3)	2.1516(15)
Gal-N11	2.118(3)	2.1681(15)
Ga1-Cl1	2.2433(8)	2.2094(5)
O1-Ga1-O11	135.08(13)	118.91(6)
O1-Ga1-N1	83.45(11)	84.28(6)
O1-Ga1-N11	91.27(11)	89.82(6)
O1-Ga1-Cl1	114.18(9)	121.55(4)
O11-Ga1-N1	89.37(12)	90.34(6)
O11-Ga1-N11	84.89(12)	84.18(5)
O11-Ga1-Cl1	110.70(10)	119.54(4)
N1-Ga1-Cl1	97.05(7)	95.45(4)
N11-Ga1-Cl1	97.38(8)	95.76(4)
N1-Ga1-N11	165.55(11)	168.80(6)


^a Only the values for the major component of **6** are given. Symmetry code: (i) -x, -y, -z + 1.

crystallised into the triclinic space group $P\bar{l}$ shown in Fig. 2. The gallium atom in 7 adopts a distorted trigonal bipyramidal geometry as observed for 6, with the oxygen atoms of each alkoxide and a chlorine atom occupying the three equatorial positions and the N atoms of the NMe₂ group in the axial positions. The Ga–N (av. 2.160 Å) and Ga–O (av. 1.838 Å) bond distances are similar to those observed in 6.

The crystal structure of compound **8** was determined by single crystal X-ray diffraction, the results are shown in Fig. 3; selected bond lengths and angles are given in Table 2. Compound **8** crystallised into the monoclinic space group $P2_1/n$. As shown in Fig. 3, the compound exhibits a dimeric molecular arrangement. The centrosymmetric, four-membered Ga_2O_2 ring is planar, and each gallium atom is coordinated in a distorted trigonal bipyramidal geometry with two chlorine atoms in equatorial positions. The bridging alkoxide substituents are located in both axial and equatorial positions, while the donor atom (O) of the alkoxide

Fig. 2 Crystal structure of [Ga(OCH(CH₃)CH₂NMe₂)₂Cl] (7) with thermal ellipsoids shown at the 50% probability level (hydrogen atoms omitted for clarity).

Fig. 3 X-Ray structure of $[Ga(OC(CH_3)_2CH_2OMe)Cl_2]_2$ (**8**) with thermal ellipsoids shown at the 50% probability level (hydrogen atoms omitted for clarity). Symmetry code: (i) -x, -y, -z + 1.

Table 2 Selected bond lengths (Å) and angles (°) for compound 8

$Bond\ lengths/\mathring{A}$					
2.1613(19) 1.9753(17) 2.1595(8)	Ga1–O2 Ga1–Cl1	1.886(2) 2.1715(8)			
77.98(7)	O2-Ga1-O2i	76.30(9)			
120.54(7)	O2i-Ga1-Cl2	102.35(6)			
91.29(6)	O2i-Ga1-O1	154.27(8)			
100.69(6)	O2-Ga1-Cl1	122.49(7)			
92.44(5)	C12-Ga1-C11	116.19(3)			
	1.9753(17) 2.1595(8) 77.98(7) 120.54(7) 91.29(6) 100.69(6)	1.9753(17) Ga1-Cl1 2.1595(8) 77.98(7) O2-Ga1-O2 ⁱ 120.54(7) O2 ⁱ -Ga1-Cl2 91.29(6) O2 ⁱ -Ga1-O1 100.69(6) O2-Ga1-Cl1			

ligand is in the other axial position. The equatorial Ga1-O2 (1.886(2) Å) bond length is significantly shorter than the axial one Ga1–O2ⁱ (1.9753(17) Å). As expected, the Ga1–OMe dative bond distance (2.1613(19) Å) is the longest Ga-O bond. The O2¹-Ga1-O1 bond angle to the opposite, axial alkoxide group is 154.27(8)°. This large deviation from 180° is due to the constraints of the internal O2ⁱ-Ga1-O2 angle of 76.30(9)° in the Ga₂O₂ ring and the geometry of the ligand. Similar distorted trigonal bipryamidal geometry at the metal centre has been noted in the closely related intramolecularly stabilised diorganoalkoxometallanes, of the type $[Me_2MOR]_2$ (R = OCH₂CH₂NMe₂, OCH₂CH₂OMe, OCH(CH₃)CH₂NMe₂ and OCH(CH₃)-CH₂OMe). 11,13,16-18 These structures are also dimeric in the solid state and consist of planar, or nearly planar, M₂O₂ rings. The metal centres are also coordinated in distorted trigonal bipyramidal geometry with comparable bond lengths and angles.

Conclusions

The reaction of $[Ga(NMe_2)_nCl_{3-n}]$ (n = 1-3) with donor functionalised alcohols resulted in the formation of a range

of gallium alkoxides. Thus, reaction of [Ga(NMe₂)₃]₂ with excess ROH (R = $CH_2CH_2NMe_2$, $CH(CH_3)CH_2NMe_2$, C(CH₃)₂CH₂OMe, CH₂CH₂OMe) in hexane at room temperature afforded colourless oils of the homoleptic gallium tris(alkoxides) $[Ga(OR)_3]_2$. The side-products [Ga(OCH₂CH₂NMe₂)₂Cl], [Ga(OCH(CH₃)CH₂NMe₂)₂Cl] and [Ga(OC(CH₃)₂CH₂OMe)Cl₂]₂ were also isolated in low yield during the synthesis. Direct synthesis of the novel gallium bis(alkoxides) was achieved from the reaction of [Ga(N- Me_2 ₂Cl] and two equivalents of ROH (R = $CH_2CH_2NMe_2$, gallium CH(CH₃)CH₂NMe₂). The mono(alkoxide), [Ga(OC(CH₃)₂CH₂OMe)Cl₂]₂, was synthesized from the reaction of [Ga(NMe₂)Cl₂] and HOC(CH₃)₂CH₂OMe. X-Ray crystallography showed that the gallium bis(alkoxide)s (6 and 7) are monomeric in the solid state, whereas the gallium mono(alkoxide) 8 is dimeric.

Experimental

General procedures

All manipulations were performed under a dry, oxygen-free dinitrogen atmosphere using standard Schlenk techniques or in an Mbraun Unilab glovebox. All solvents used were stored in alumina columns and dried with anhydrous engineering equipment, such that the water concentration was 5–10 ppm. The gallium amides, $[Ga(NMe_2)_3]_2$ (1), $[ClGa(NMe_2)_2]$ (9) and [Cl₂Ga(NMe₂)] (10) were prepared according to literature procedures and compounds 2 and 3 via modified literature routes.^{3,14,19} All other reagents were procured commercially from Aldrich and the alcohols were degassed by three freezepump-thaw cycles and stored over 4 Å molecular sieves. Microanalytical data were obtained at UCL. All ¹H and ¹³C NMR spectra were obtained on a Bruker AMX400 spectrometer, operating at 400.12 MHz. All spectra were recorded using CD₂Cl₂, which was dried and degassed over molecular sieves prior to use or C₆D₆ which was dried using Na/ benzophenone; ¹H and ¹³C chemical shifts are reported relative to SiMe₄ (δ 0.00). All IR spectra were recorded using a Shimadzu FTIR-8200 spectrometer, operating in the region of 4000-400 cm⁻¹. The IR samples were prepared using Nujol. The mass spectra were obtained using a Micromass 70-SE spectrometer using Chemical Ionization (CI) with methane reagent gas.

1: Anal. Calc. (%) for $C_{12}H_{36}N_6Ga_2$: C, 35.68; H, 8.97, 20.81. Found (%): C, 35.17; H, 8.97; N, 20.14. ¹H NMR (CD₂Cl₂): δ /ppm 2.69 (s, μ-NC H_3 , 12H), 2.68 (s, NC H_3 , 24H). ¹³C{ ¹H} NMR (CD₂Cl₂): δ /ppm 42.9 (NCH₃), 43.2 (μ-NCH₃). IR (cm⁻¹): 2814 s, 2767 s, 1463 s, 1259 s, 1128 m, 1040 w, 899 vs., 502 vs.

Synthesis of 2. HOCH₂CH₂NMe₂ (0.8 mL, 7.96 mmol) was added dropwise to a solution of [Ga(NMe₂)₃]₂ (0.5 g, 1.24 mmol) in hexane (20 mL) at -78 °C with stirring over a 0.5 h period. The reaction mixture was allowed to warm slowly to room temperature and stirred for 24 h. Removal of the solvent *in vacuo* afforded a clear oil (0.58 g, yield 70%). ¹H NMR δ/ppm (CD₂Cl₂): 2.12 (s, NCH₃, 36H), 2.29 (t, OCH₂C-H₂N, 12H, J = 8.1 Hz), 3.55 (t, OCH₂CH₂N, 12H, J = 8.1 Hz). ¹³C{¹H}NMR δ/ppm (CD₂Cl₂): 45.0 (NCH₃), 59.2

(OCH₂CH₂N), 61.6 (OCH₂CH₂N). IR (cm⁻¹): 3256 vs., 2913 vs., 2191 s, 1974 vs., 1812 s, 1678 s, 1605 m, 1454 vs., 1405 s, 1368 s, 1350 s, 1327 m, 1272 s, 1185 m, 1156 m, 1084 s, 949 s, 887 s, 787 s, 731 s, 696 m, 623 vs., 561 s. Mass Spec (CI): (m/z) 580 ([M] – OCH₂CH₂NMe₂), 334 Ga(OCH₂CH₂NMe₂)₃, 245 Ga(OCH₂CH₂NMe₂)₂, 158 Ga(OCH₂CH₂ NMe₂).

Synthesis of 3. Compound **3** was prepared in the same manner as to **2** using HOCH(CH₃)CH₂NMe₂ (1.0 mL, 8.11 mmol), [Ga(NMe₂)₃]₂ (0.5 g, 1.24 mmol) and hexane (20 mL). Removal of the solvent *in vacuo* afforded a yellow non-viscous oil (0.54 g, yield 58%). ¹H NMR δ /ppm (CD₂Cl₂): 1.09 (d, OCH(CH₃), 18H, J = 5.8 Hz), 2.21–2.11 (broad, OCHCH₂N, 12H), 2.31 (broad, NCH₃, 36H), 3.86 (m, OCH(CH₃)CH₂, 6H). ¹³C{¹H}NMR δ /ppm (CD₂Cl₂): 24.1 (GaOCH(CH₃)), 46.4 (NCH₃), 63.4 (OCH-CH₂N), 69.4 (GaOCH). IR (cm⁻¹): 2924 s, 2361 m, 2342 m, 1457 vs., 1377 m, 1347 v, 1322 m, 1260 s, 1188 m, 1137 s, 1092 s, 1030 m, 1012 s, 955 s, 858 m, 836 m, 802 w, 722 s, 668 m, 637 s, 539 w, 496 m, 479 s. Mass Spec (CI): (m/z) 752 [M], 376 Ga(OCH(CH₃)CH₂NMe₂)₃ 273 Ga(OCH(CH₃)CH₂NMe₂)₂ 102 (OCH(CH₃)CH₂NMe₂), 86 CH(CH₃)CH₂NMe₂), 58 (CH₂NMe₂).

Synthesis of 4. Compound **4** was prepared in the same manner as **2** but using HOC(CH₃)₂CH₂OMe (1.00 mL, 8.56 mmol), [Ga(NMe₂)₃]₂ (0.5 g, 1.24 mmol) in hexane (20 mL). Removal of the solvent *in vacuo* afforded a brown non-viscous oil (0.56 g, yield 60%). ¹H NMR δ /ppm (C₆D₆): 1.11 (s, OC(CH₃), 36H), 2.89 (s, GaOCCH₂, 12H), 2.96 (s, OCH₃, 18H). ¹³C{}¹H} NMR δ /ppm (C₆D₆): 26.3 (OC(CH₃)), 58.8 (OCH₃), 69.7 (OCCH₂), 81.4 (OCCH₂). IR (cm⁻¹): 2962 m, 2360 m, 1614 w, 1455 m, 1384 m, 1261 m, 1092 s, 1020 s, 799 s, 666 m. Mass Spec (CI): (*m*/*z*) 655 [M] – OC(CH₃)₂-CH₂OCH₃, 379 [M], 275 Ga(OC(CH₃)₂CH₂OCH₃)₂, 87 (C(CH₃)₂CH₂OCH₃).

Synthesis of 5. Compound **5** was prepare in the same manner as **2** using HOCH₂CH₂OMe (0.6 mL, 7.61 mmol) and [Ga(NMe₂)₃]₂ (0.5 g, 1.24 mmol) in hexane (20 mL). Removal of the solvent *in vacuo* afforded a yellow non-viscous oil (0.38 g, yield 52%). ¹H NMR δ /ppm (C₆D₆): 3.23 (s, OCH₃, 18H), 3.43 (b, OCH₂CH₂OCH₃, 12H), 4.19 (t, OC-H₂CH₂OCH₃, 12H). ¹³C{¹H}NMR δ /ppm (C₆D₆): 58.6 (OCH₃), 63.1 (OCH₂CH₂OCH₃), 72.6 (OCH₂CH₂OCH₃). IR (cm⁻¹): 2880 s, 2714 s, 2396 s, 2153 s, 1971 *vs.*, 1606 s, 1455 *vs.*, 1396 s, 1365 s, 1331 s, 1241 s, 1199 s, 1092 s, 964 s, 904 s, 842 s, 700 s, 733 s, 697 s. Mass spec. (CI): (*m*/*z*) 589 [M], 515 [M] – OCH₂CH₂OMe, 19 Ga(OCH₂CH₂OMe)₂.

Synthesis of 6. HOCH₂CH₂NMe₂ (0.75 mL, 7.37 mmol) was added dropwise to a solution of **9** (0.7126 g, 3.69 mmol) in hexane (20 mL) at -78 °C. The reaction mixture was allowed to warm slowly to room temperature and stirred for 24 h. Removal of the solvent *in vacuo* afforded a pale yellow solid (0.6203 g, yield 60%). ¹H NMR δ/ppm (C₆D₆): 2.00 (NCH₃, 18H), 2.27 (t, OCH₂CH₂N, 6H, J = 5.4 Hz), 3.93 (t, OCH₂CH₂N, 6H, J = 5.4 Hz). ¹³C{¹H} NMR δ/ppm (C₆D₆): 43.9 (NCH₃), 58.7 (OCH₂CH₂N), 60.4 (OCH₂CH₂N). Mass spec. (CI): (m/z) 281 [M], 246 [M] – Cl, 194 [M] – OCH₂CH₂NMe₂, 158 [Ga(OCH₂CH₂NMe₂)], 88 [OCH₂CH₂NMe₂]. Anal. Calc. for

Table 3 Crystallographic data summary for compounds 6, 7 and 8

	6	7	8
Formula	C ₈ H ₂₀ ClGaN ₂ O ₂	C ₁₀ H ₂₂ ClGaN ₂ O ₂	C ₁₀ H ₂₂ Cl ₄ Ga ₂ O ₄
Formula weight	281.43	309.48	487.52
T/K	150(2)	150(2)	150(2)
Crystal system	Orthorhombic	Triclinic	Monoclinic
Space group	$Pna2_1$	$P\bar{1}$	$P2_1/n$
a/\mathring{A}	9.3818(8)	7.7913(13)	8.4505(10)
$\dot{b}/\mathring{\rm A}$	12.2919(10)	7.9556(13)	13.7024(17)
c/Å	10.7257(9)	12.052(2)	8.6396(11)
α/°	90	99.069(2)	90
$\beta/^{\circ}$	90	93.211(3)	113.648(2)
v/°	90	102.462(2)	90
V/\mathring{A}^3	1236.89(18)	717.2(2)	916.4(2)
$\stackrel{''}{V}/\mathring{ ext{A}}^3 \ Z$	4	2	2
$D_{\rm c}/{ m g~cm}^{-3}$	1.511	1.433	1.767
$\mu(\text{Mo K}\alpha)/\text{mm}^{-1}$	2.421	2.095	3.529
Reflns collected	10360	6168	13241
Indep refins (R_{int})	2945 (0.0220)	3265 (0.0156)	4429 (N/A)
$R1 \left[F^2 > 2\sigma\right]$	0.0273	0.0264	0.0294
wR2 (all data)	0.0637	0.0662	0.0829

C₈H₂₀ClGaN₂O₂: C, 34.14; H, 7.16; N, 9.95%. Found: C, 34.66; H, 7.72; N, 9.05%.

Synthesis of 7. HOCH(CH₃)CH₂NMe₂ (1.1 mL, 8.30 mmol) was added dropwise to a stirred solution of **9** (0.8023 g, 4.15 mmol) in hexane (20 mL) at -78 °C. The reaction mixture was allowed to warm to room temperature and stirred for 24 h. Removal of the solvent *in vacuo* afforded a white crystalline solid (0.6923 g, yield 54%). ¹H NMR δ/ppm (CD₂Cl₂): 1.31 (d, OCH(CH₃), 6H, J = 5.8 Hz), 2.29–2.41 (broad, OCHCH₂N, 4H), 2.49 (broad, NCH₃, 12H), 3.95 (m, OCH(CH₃)CH₂, 2H). Mass spec. (CI): (m/z) 309 [M], 273 [M] – Cl, 206 [M] – OCH(CH₃)CH₂NMe₂, 102 [OCH(CH₃)CH₂NMe₂], 86 OCH(CH₃)CH₂NMe₂. Anal. Calc. for C₁₀H₂₄ClGaN₂O₂: C, 38.81; H, 7.81; N, 9.05%. Found: C, 38.88; H, 7.08; N, 9.67%.

Synthesis of 8. HOC(CH₃)₂CH₂OMe (0.4 mL, 3.26 mmol) was added dropwise to a stirred solution of **10** (0.6027 g, 3.26 mmol) in hexane (20 mL) at -78 °C. The reaction mixture was allowed to warm to room temperature and stirred for 24 h. Removal of the solvent *in vacuo* afforded a white crystalline solid (0.4936 g, yield 62%). ¹H NMR δ/ppm (CD₂Cl₂): 1.48 (s, OC(CH₃), 12H), 2.58 (s, GaOCCH₂, 4H), 3.60 (s, OCH₃, 6H). ¹³C{ ¹H} NMR δ/ppm (C₆D₆): 26.1 (OC(CH₃)), 58.9 (OCH₃), 70.1 (OCCH₂), 79.9 (OCCH₂). Mass spec. (CI): (m/z) 451 [Ga(OC(CH₃)₂CH₂OMe)₃Cl₂], 290 [Ga(OC(CH₃)₂CH₂OMe)₂Cl₂-OC(CH₃)₂CH₂OMe], 245 [Ga(OC(CH₃)CH₂OMe)₂Cl₂], 87 [C(CH₃)₂CH₂OMe]. Anal. Calc. for C₅H₁₁Cl₂GaO₂: C, 24.64; H, 4.55%. Found: C, 25.02; H, 4.26%.

X-Ray crystal structures determination

Crystals of **6–8** were obtained from oils at room temperature after a few days. A single crystal was mounted on a glass fibre and all geometric and intensity data were taken from this sample on a Bruker SMART APEX CCD diffractometer using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at 150 ± 2 K. Data reduction and integration was carried out with SAINT + 20 and absorption corrections applied using the program SADABS²¹ (**6**, **7**). All of the structures were solved by direct methods using

SHELXS-97²² and developed using alternating cycles of least-squares refinement and difference-Fourier synthesis.²³ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions and their thermal parameters linked to those of the atoms to which they were attached (riding model). Crystallographic refinement parameters of complexes 6 to 8 are summarized in Table 3, and the selected bond distances and angles of these complexes are listed in Tables 1 and 2.

The structure of [Ga(OCH₂CH₂NMe₂)₂Cl] (6) was found to have both enantiomeric forms on the same site with the ratio 82: 18 and with Ga1 and Cl1 common to both. The ligands were modelled anisotropically with suitable constraints and restraints. Also, the structure was refined as a racemic twin with the ratio 66: 33.

The structure of [Ga(OC(CH₃)₂CH₂OMe)Cl₂]₂ (8) was found to be a non-merohedral twin so GEMINI²⁴ was used to index the data which showed that there were two, approximately equal components. The output p4p files for each component were read back into SMART²⁵ and run through the BRAVAIS and L.S. routines. The data were combined to give a single p4p file and integrated simultaneously using SAINT+.20 The twin law was found to be $0.04 \ 0.096/0 - 10/1.04 \ 0.004$. The dataset had 5280 data from component 1 only, 5271 data from component 2 only and 2690 data belonging to both. I/σ for overlapping reflections was 28.4. The dataset was corrected for absorption using TWI-NABS²⁶ which was also used to produce an HKLF 4 file (nonoverlapping reflections for component 1 only) for structure solution and initial refinement and an HKLF 5 file for final refinement of the structure. The twin ratio refined to 0.4392(15) (using the BASF instruction).

All of the structure diagrams were produced using the SHELXTL program suite.²⁷†

Acknowledgements

EPSRC are thanked for two studentships (SB and CEK) and the MAPS faculty research fund (UCL) for providing additional support.

References

- C. J. Carmalt and S. J. King, Coord. Chem. Rev., 2006, 250, 682–709.
- 2 M. Veith, S. Faber, H. Wolfanger and V. Huch, *Chem. Ber.*, 1996, 129, 381–384.
- 3 S. Basharat, C. J. Carmalt, S. J. King, E. S. Peters and D. A. Tocher, *Dalton Trans.*, 2004, 3475–3480.
- 4 N. Nami Chamazi, M. M. Heravi and B. Neumüller, Z. Anorg. Allg. Chem., 2007, 633, 709–712.
- 5 Y. Chi, T.-S. Chou, Y.-J. Wang, S.-F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S.-M. Penga and G.-H. Lee, *Organometallics*, 2004, 23, 95–103.
- 6 B. Neumüller, Chem. Soc. Rev., 2003, 35, 50–55.
- 7 S. Basharat, W. Betchley, C. J. Carmalt, S. Barnett, D. A. Tocher and H. O. Davies, *Organometallics*, 2007, 26, 403–407.
- 8 S. R. Bindal, V. K. Mathur and R. C. Mehrotra, J. Chem. Soc. A, 1969, 863–867.
- 9 L. Mîinea, S. Suh, S. G. Bott, J.-R. Liu, W.-K. Chu and D. M. Hoffman, J. Mater. Chem., 1999, 9, 929–935.
- M. Valet and D. M. Hoffman, Chem. Mater., 2001, 13 2135–2143.
- 11 S. Basharat, C. J. Carmalt, S. A. Barnett, D. A. Tocher and H. O. Davies, *Inorg. Chem.*, 2007, 46, 9473–9480.
- 12 S. Basharat, C. J. Carmalt, R. Binions, R. Palgrave and I. P. Parkin, *Dalton Trans.*, 2008, 591–595.
- 13 S. Basharat, C. J. Carmalt, S. A. Barnett, D. A. Tocher and H. O. Davies, *J. Organomet. Chem.*, 2008, **693**, 1787–1796.

- 14 (a) C. J. Carmalt, J. D. Mileham, A. J. P. White, D. J. Williams and J. W. Steed, J. Chem. Soc., Dalton Trans., 2001, 6035–6038; (b) H. Kadokure and T. Ishii, US Pat. 6 426 425, 2002, July 30.
- 15 D. A. Atwood, A. H. Cowley, R. A. Jones, M. A. Mardones, J. L. Atwood and S. G. Bott, *J. Coord. Chem.*, 1992, 26, 285.
- 16 S. J. Rettig, A. Storr and J. Trotter, Can. J. Chem., 1975, 53, 58-66.
- 17 K.-H. Thiele, E. Hecht, T. Gelbrich and U. Dumichen, J. Organomet. Chem., 1997, 540, 89–94.
- 18 H. Schumann, M. Frick, B. Heymer and F. Girgsdies, J. Organomet. Chem., 1996, 512, 117–126.
- 19 K. M. Waggoner, M. M. Olmstead and P. P. Power, *Polyhedron*, 1990, 9, 257–263.
- 20 SAINT+ version 6.45a, Bruker AXS Inc., Madison, Wisconsin, USA, 2003.
- 21 SADABS version 2.03, Bruker AXS Inc., Madison, Wisconsin, USA, 2001.
- 22 G. M. Sheldrick, SHELXS-97, University of Göttingen, Germany, 1997.
- 23 G. M. Sheldrick, SHELXL-97, University of Göttingen, Germany, 1997.
- 24 GEMINI, version 1.02, Bruker AXS Inc., Madison, Wisconsin, USA, 2000.
- 25 SMART, version 5.625, Bruker AXS Inc., Madison, Wisconsin, USA, 2001.
- 26 TWINABS, version 1.02, Bruker AXS Inc., Madison, Wisconsin, USA, 2003.
- 27 SHELXTL, version 6.12, Bruker AXS Inc., Madison, Wisconsin, USA, 2000.